Ion transport across CF and normal murine olfactory and ciliated epithelium.

نویسندگان

  • B R Grubb
  • T D Rogers
  • R C Boucher
  • L E Ostrowski
چکیده

The nasal epithelium of the cystic fibrosis (CF) mouse has been used extensively in CF research because it exhibits ion transport defects similar to those of human CF airways. This tissue is composed of approximately 50% olfactory (OE) and approximately 50% ciliated epithelium (CE), and on the basis of previous observations, we hypothesized that a significant fraction of the bioelectric signals from murine nasal tissue may arise from OE rather than CE, while CE is the target tissue for CF gene therapy. We compared the bioelectric properties of isolated OE from the nasal cavity and CE from the nasopharynx in Ussing chamber studies. Hyperabsorption of Na(+) [amiloride response; CF vs. wild type (WT)] was approximately 7.5-fold greater in the OE compared with the CE. The forskolin response in native tissues did not reliably distinguish genotypes, likely due to a cyclic nucleotide-gated cation conductance in OE and a calcium-mediated Cl(-) conductance in CE. By potential difference assay, hyperabsorption of Na(+) (CF vs. WT) and the difference in response to apical 0 Cl(-) buffer (CF vs. WT) were approximately 2-fold greater in the nasal cavity compared with the nasopharynx. Our studies demonstrate that in the CF mouse, both the hyperabsorption of Na(+) and the Cl(-) transport defect are of larger magnitude in the OE than in the CE. Thus, while the murine CF nasal epithelium is a valuable model for CF studies, the bioelectrics are likely dominated by the signals from the OE, and assays of the nasopharynx may be more specific for studying the ciliated epithelium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFTR Delivery to 25% of Surface Epithelial Cells Restores Normal Rates of Mucus Transport to Human Cystic Fibrosis Airway Epithelium

Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. ...

متن کامل

The inexhaustible mouse nose. Focus on "olfactory epithelia exhibit progressive functional and morphological defects in CF mice".

THE ABILITY TO ELIMINATE any gene in mice and the increasing ability to identify specific genes responsible for human singlegene diseases is providing a cornucopia of biological information on the relation of genotype to phenotype. Tracing the pleiotropic effects of genes is greatly facilitated when crossspecies comparisons are possible. In that regard, and quite apart from its primary motivati...

متن کامل

Pathophysiology of gene-targeted mouse models for cystic fibrosis.

Pathophysiology of Gene-Targeted Mouse Models for Cystic Fibrosis. Physiol. Rev. 79, Suppl.: S193-S214, 1999. - Mutations in the gene causing the fatal disease cystic fibrosis (CF) result in abnormal transport of several ions across a number of epithelial tissues. In just 3 years after this gene was cloned, the first CF mouse models were generated. The CF mouse models generated to date have pro...

متن کامل

Characterization of Lithium Ion Transport Via Dialysis Process

Dialysis is a membrane based separation process in which the concentration gradient across the membrane is the driving force resulting in a flow of material from one side <span style="font-size: 10pt; ...

متن کامل

Amino acid odorants stimulate microvillar sensory neurons.

The olfactory epithelium (OE) of zebrafish is populated with ciliated and microvillar olfactory sensory neurons (OSNs). Whether distinct classes of odorants specifically activate either of these unique populations of OSNs is unknown. Previously we demonstrated that zebrafish OSNs could be labeled in an activity-dependent fashion by amino acid but not bile acid odorants. To determine which senso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 296 6  شماره 

صفحات  -

تاریخ انتشار 2009